ModEst:Q&A lopende estafette: verschil tussen versies

Uit Systeemmodellering
Naar navigatie springen Naar zoeken springen
 
(101 tussenliggende versies door 2 gebruikers niet weergegeven)
Regel 34: Regel 34:
 
'''Mag je bij "... gegeven ''x'', ''y'' en ''z''" veronderstellen dat die gegeven grootheden constant zijn?'''
 
'''Mag je bij "... gegeven ''x'', ''y'' en ''z''" veronderstellen dat die gegeven grootheden constant zijn?'''
 
:Indien er geen reden is om aan te nemen dat exogene grootheden dynamisch zijn, dan mag je ze constant veronderstellen.
 
:Indien er geen reden is om aan te nemen dat exogene grootheden dynamisch zijn, dan mag je ze constant veronderstellen.
:Bij sommige vraagstukken (C, D en E in Estafette A) wordt expliciet aangegeven welke exogene grootheden tijdsafhankelijk zijn en daarom bij de operationalisatie (estafettestap 2) als een functie van de tijd moeten worden gedefineerd, d.w.z. x = f(t) (zie [[Functievoorschrift]]).
+
:Bij sommige vraagstukken wordt expliciet aangegeven welke exogene grootheden tijdsafhankelijk zijn en daarom bij de operationalisatie (estafettestap 2) als een functie van de tijd moeten worden gedefineerd, d.w.z. x = f(t) (zie [[Functievoorschrift]]).
  
 
'''De casus vraagt een probabilistisch model en in de onderzoeksvraag wordt naar een kansverdeling gevraagd. Als wij in de vergelijkingen al weergeven welke kansverdeling gebruikt moet worden, geven wij al antwoord op de onderzoeksvraag. Wat wordt hier bedoeld?'''
 
'''De casus vraagt een probabilistisch model en in de onderzoeksvraag wordt naar een kansverdeling gevraagd. Als wij in de vergelijkingen al weergeven welke kansverdeling gebruikt moet worden, geven wij al antwoord op de onderzoeksvraag. Wat wordt hier bedoeld?'''
 
:Als in de onderzoeksvraag naar een kansverdeling wordt gevraagd (zoals "Wat is de kansverdeling van de wachttijd?"), wordt een ''[[Kansverdeling#Empirische_verdeling|empirische verdeling]]'' bedoeld: een verdeling die is gebaseerd ''op de uitkomsten van het model''.
 
:Als in de onderzoeksvraag naar een kansverdeling wordt gevraagd (zoals "Wat is de kansverdeling van de wachttijd?"), wordt een ''[[Kansverdeling#Empirische_verdeling|empirische verdeling]]'' bedoeld: een verdeling die is gebaseerd ''op de uitkomsten van het model''.
 
:Stel dat dit de berekende wachttijden zijn in minuten (op grootte gesorteerd): 1,3; 1,5; 1,5; 1,9; 2,1; 2,3; 2,7; 3,1; 3,9; 4,4.  
 
:Stel dat dit de berekende wachttijden zijn in minuten (op grootte gesorteerd): 1,3; 1,5; 1,5; 1,9; 2,1; 2,3; 2,7; 3,1; 3,9; 4,4.  
:Dan kun je bijvoorbeeld een staafdiagram maken voor de wachttijden binnen intervallen [0, 1>, [1, 2>, [2, 3>, [3, 4> en [4, 5>, die respectievelijk 0%, 40%, 30%, 20% en 10% hoog zijn.
+
:Dan kun je bijvoorbeeld een [[Staafdiagram#Histogram|histogram]] maken voor de wachttijden binnen intervallen [0, 1>, [1, 2>, [2, 3>, [3, 4> en [4, 5>, die respectievelijk 0%, 40%, 30%, 20% en 10% hoog zijn.
  
 
'''Wanneer wij een reeks uitkomsten hebben, welke functie in Excel kan dan worden gebruikt om hier een kansverdeling uit te halen?'''
 
'''Wanneer wij een reeks uitkomsten hebben, welke functie in Excel kan dan worden gebruikt om hier een kansverdeling uit te halen?'''
:Daar is geen functie voor in Excel. Het is dan de bedoeling dat je de [[Kansverdeling#Empirische_verdeling|empirische verdeling]] laat zien in een staafdiagram zoals beschreven in de vraag hierboven.
+
:Daar is geen functie voor in Excel. Het is dan de bedoeling dat je de [[Kansverdeling#Empirische_verdeling|empirische verdeling]] laat zien in een histogram zoals beschreven in de vraag hierboven. Lees [[Staafdiagram#Histogram_maken_in_Excel|deze tekst]] hier op de wiki.
  
 
== Modelschema ==
 
== Modelschema ==
Regel 48: Regel 48:
 
:Een interne variabele wordt door het model berekend op basis van de gekozen waarden van de invoervariabelen. De invoervariabelen zélf worden door het model niet veranderd.
 
:Een interne variabele wordt door het model berekend op basis van de gekozen waarden van de invoervariabelen. De invoervariabelen zélf worden door het model niet veranderd.
 
:Als je bijvoorbeeld een [[discretetijdmodel]] maakt om te bepalen hoe lang het duurt om water aan de kook te brengen om thee te zetten, zijn ''de begintemperatuur van het water'' en ''het vermogen van de waterkoker'' '''invoervariabelen''', zijn ''de temperatuur van het water op een bepaald moment'' (die dus door het model berekend wordt) en ''de verstreken tijd'' '''interne variabelen''', en is ''de tijd die nodig is om 100 °C te bereiken'' (die dus ook berekend wordt) de '''uitvoervariabele'''.
 
:Als je bijvoorbeeld een [[discretetijdmodel]] maakt om te bepalen hoe lang het duurt om water aan de kook te brengen om thee te zetten, zijn ''de begintemperatuur van het water'' en ''het vermogen van de waterkoker'' '''invoervariabelen''', zijn ''de temperatuur van het water op een bepaald moment'' (die dus door het model berekend wordt) en ''de verstreken tijd'' '''interne variabelen''', en is ''de tijd die nodig is om 100 °C te bereiken'' (die dus ook berekend wordt) de '''uitvoervariabele'''.
 +
 +
'''Moet je in het modelschema al stochasten zetten of pas in de modelvergelijkingen?'''
 +
:Een [[stochast|stochastische variabele]] hoort in het modelschema te staan. Schrijf je in een vergelijking bijvoorbeeld:
 +
::A = 123 + B / U(1, C)
 +
:dan is U(1, C) wel ''stochastisch'', maar geen variabele maar een "anoniem" toevalsgetal uit een uniforme kansverdeling, vergelijkbaar met de "anonieme" constante 123: die vermeld je ook niet in het modelschema. De parameter C is wél een variabele die in het modelschema moet staan.
 +
:Noteer je deze vergelijking als twee aparte, dus bijvoorbeeld:
 +
::A = 123 + B/D
 +
::D ~ U(1, C)
 +
:dan is D een stochastische ''variabele'', en hoort daarom in het modelschema te staan.
  
 
== Systeemschets ==
 
== Systeemschets ==
 
'''Mag je in de systeemschets gebruik maken van een legenda of moet alles in de schets zelf staan?'''
 
'''Mag je in de systeemschets gebruik maken van een legenda of moet alles in de schets zelf staan?'''
 
:Een systeemschets moet direct herkenbaar zijn, dus zou er geen legenda nodig moeten zijn (een legenda is nodig voor ''[[Representatie#Symbolisch|symbolische]]'' representatie, en afgezien van de tekst van de labels hoort een systeemschets geen symbolische elementen te bevatten).
 
:Een systeemschets moet direct herkenbaar zijn, dus zou er geen legenda nodig moeten zijn (een legenda is nodig voor ''[[Representatie#Symbolisch|symbolische]]'' representatie, en afgezien van de tekst van de labels hoort een systeemschets geen symbolische elementen te bevatten).
 +
 +
'''Onze voorganger heeft de systeemschets niet in het Powerpoint-document gezet. Daardoor kunnen wij die niet aanpassen of checken over de bronvermelding klopt. Heeft dit gevolgen voor de beoordeling?'''
 +
:Het indienen van een diagram in een formaat dat je kunt aanpassen is een ''service'' die je biedt aan je opvolger. Het is ''wenselijk'' dat je dat doet, maar ''geen essentieel onderdeel van de opdracht''. Het is dus ook nog steeds toegestaan om bijvoorbeeld een foto van een handgetekend diagram te gebruiken, of een afbeelding gemaakt m.b.v. een ander tekenpakket. Dat geldt ook voor systeemschetsen.
  
 
== Conceptueel model ==
 
== Conceptueel model ==
Regel 60: Regel 72:
  
 
:De genoemde modellen kunnen ieder afzonderlijk voldoende zijn als conceptueel model, maar je [[conceptueel model|conceptuele model]] moet ''alle'' concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Het kan dus goed zijn dat je meerdere diagrammen nodig hebt in je representatie van je conceptuele model.
 
:De genoemde modellen kunnen ieder afzonderlijk voldoende zijn als conceptueel model, maar je [[conceptueel model|conceptuele model]] moet ''alle'' concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Het kan dus goed zijn dat je meerdere diagrammen nodig hebt in je representatie van je conceptuele model.
 +
 +
'''Is een causalerelatiediagram / toestandsdiagram / voorraad-stroomdiagram verplicht?'''
 +
 +
:Nee. De conceptualisatie moet ''alle'' concepten en onderlinge relaties weergeven. Als dat kan met één type diagram, is het niet nodig er meer op te nemen. Mocht dat het gekozen conceptuele model erg verduidelijken, dan ''mag'' het uiteraard wel.
 +
:Wanneer gevraag wordt een cybernetisch model te construeren, is het niet verplicht dit ook te tekenen. Het kan duidelijk zijn om een plaatje toe te voegen (en dan een op de casus toegespitst plaatje, niet van het [[Cybernetisch_model|standaard CM]]), maar noodzakelijk is dit niet: het kan ook duidelijk in tekst weergegeven worden (zie het voorbeeld bij [[ModEst:Conceptueel_model|de instructies voor Stap 1]]).
 +
 +
'''Moet je in een conceptueel model ook natuurconstanten opnemen?'''
 +
 +
:Je conceptuele model moet ''alle'' relevante grootheden in het systeem benoemen. Het maakt niet uit of ze constant zijn of van waarde kunnen veranderen. Natuurconstanten zoals bijv. de valversnelling zijn [[Grootheid|grootheden]] die meestal niet expliciet als "gegeven" in de onderzoeksvraag worden vermeld, maar wel relevant kunnen zijn en dan dus in je model benoemd moeten worden.
 +
:N.B. Wiskundige constanten zoals π zijn geen natuurconstanten, dus die laat je weg.
  
 
'''Alle concepten en relaties in een toestandsdiagram?'''
 
'''Alle concepten en relaties in een toestandsdiagram?'''
Regel 65: Regel 87:
 
Wij hebben voor een toestandsdiagram gekozen, en het wordt daarin heel onoverzichtelijk om alle grootheden toe te voegen. Op de wikipagina wordt niet echt goed duidelijk hoe dit moet met de toestandsdiagram. Moeten ''alle'' grootheden uit de systeemschets aangegeven worden in het toestandsdiagram?
 
Wij hebben voor een toestandsdiagram gekozen, en het wordt daarin heel onoverzichtelijk om alle grootheden toe te voegen. Op de wikipagina wordt niet echt goed duidelijk hoe dit moet met de toestandsdiagram. Moeten ''alle'' grootheden uit de systeemschets aangegeven worden in het toestandsdiagram?
 
:Je conceptuele model moet ''alle'' concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Als dit niet duidelijk kan in een toestandsdiagram, dan is een toestandsdiagram in dit geval blijkbaar niet voldoende als conceptueel model (dat geldt wel vaker voor een toestandsdiagram overigens). Je zult daarnaast dus nog een andere representatie moeten gebruiken.
 
:Je conceptuele model moet ''alle'' concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Als dit niet duidelijk kan in een toestandsdiagram, dan is een toestandsdiagram in dit geval blijkbaar niet voldoende als conceptueel model (dat geldt wel vaker voor een toestandsdiagram overigens). Je zult daarnaast dus nog een andere representatie moeten gebruiken.
 
'''Is een causalerelatiediagram / toestandsdiagram / voorraad-stroomdiagram verplicht?'''
 
 
:Nee. De conceptualisatie moet ''alle'' concepten en onderlinge relaties weergeven. Als dat kan met één type diagram, is het niet nodig er meer op te nemen. Mocht dat het gekozen conceptuele model erg verduidelijken, dan ''mag'' het uiteraard wel.
 
:Wanneer gevraag wordt een cybernetisch model te construeren, is het niet verplicht dit ook te tekenen. Het kan duidelijk zijn om een plaatje toe te voegen (en dan een op de casus toegespitst plaatje, niet van het [[Cybernetisch_model|standaard CM]]), maar noodzakelijk is dit niet: het kan ook duidelijk in tekst weergegeven worden.
 
  
 
'''Moet je bij grootheden in een conceptueel model aangeven of het om een kans of een kansverdeling gaat?'''
 
'''Moet je bij grootheden in een conceptueel model aangeven of het om een kans of een kansverdeling gaat?'''
 
:In een VSD of CRD of systeemschets horen alleen [[grootheid|grootheden]] te staan. [[Kansverdeling]]en zijn geen grootheden -- probeer maar: "De kansverdeling van het aantal lekke banden neemt toe." is geen correcte en betekenisvolle Nederlandse zin, maar "Het aantal lekke banden neemt toe." is dat wel.
 
:In een VSD of CRD of systeemschets horen alleen [[grootheid|grootheden]] te staan. [[Kansverdeling]]en zijn geen grootheden -- probeer maar: "De kansverdeling van het aantal lekke banden neemt toe." is geen correcte en betekenisvolle Nederlandse zin, maar "Het aantal lekke banden neemt toe." is dat wel.
 
:Voor "kans" ligt dat anders: kansen zijn wel grootheden: "De kans op een lekke band neemt toe." is wél een grammaticaal correcte en betekenisvolle zin. Vandaar dat je in een VSD regelmatig kansen zult zien staan, vaak als [[Modelschema|exogene]] grootheden omdat kansen vaak als gegeven moeten worden beschouwd. Maar let op: ze kunnen ook [[Modelschema|endogeen]] zijn. Wanneer bijvoorbeeld gegeven is dat een kans lineair toeneemt, kun je die als een [[Voorraad-stroomdiagram|voorraadgrootheid]] weergeven met een constante instroom.
 
:Voor "kans" ligt dat anders: kansen zijn wel grootheden: "De kans op een lekke band neemt toe." is wél een grammaticaal correcte en betekenisvolle zin. Vandaar dat je in een VSD regelmatig kansen zult zien staan, vaak als [[Modelschema|exogene]] grootheden omdat kansen vaak als gegeven moeten worden beschouwd. Maar let op: ze kunnen ook [[Modelschema|endogeen]] zijn. Wanneer bijvoorbeeld gegeven is dat een kans lineair toeneemt, kun je die als een [[Voorraad-stroomdiagram|voorraadgrootheid]] weergeven met een constante instroom.
:Een kans kan zelfs de uitvoervariabele zijn, zoals bijvoorbeeld bij het [[Multinomiaal logitmodel|MNL-model]]. Maar let op: die kans wordt berekend door een ''deterministisch'' model. Bij een ''probabilistisch'' model bepaal je kansen o.b.v. [[Experimenteel ontwerp#Aantal replicaties|replicaties]], dus door het model een (groot) aantal keren door te rekenen. Dat geeft dan een kans''verdeling''. Met een ''kans'' wordt de kansverdeling op een binaire variabele bedoeld, waarbij 1 weergeeft dat de gebeurtenis waarvoor de kans moet worden bepaald tijdens de modelrun optreedt. In zulke gevallen is het beter om in je conceptuele model die binaire grootheid op te nemen (bijv. "lekke band JA/NEE"). Op die manier maak je ondubbelzinnig duidelijk dat je model straks óf een 1 óf een 0 als uitvoerwaarde moet hebben.  
+
:Een kans kan zelfs de uitvoervariabele zijn. Bij een ''probabilistisch'' model bepaal je kansen o.b.v. [[Experimenteel ontwerp#Aantal replicaties|replicaties]], dus door het model een (groot) aantal keren door te rekenen. Dat geeft dan een kans''verdeling''. Met een ''kans'' wordt de kansverdeling op een binaire variabele bedoeld, waarbij 1 weergeeft dat de gebeurtenis waarvoor de kans moet worden bepaald tijdens de modelrun optreedt. In zulke gevallen is het beter om in je conceptuele model die binaire grootheid op te nemen (bijv. "lekke band JA/NEE"). Op die manier maak je ondubbelzinnig duidelijk dat je model straks óf een 1 óf een 0 als uitvoerwaarde moet hebben.  
  
 
'''Is het toegestaan om een aantal met # weer te geven in een conceptueel model (systeemschets, [[causalerelatiediagram|CRD]], [[voorraad-stroomdiagram|VSD]])? Bijvoorbeeld # wachtende klanten?'''
 
'''Is het toegestaan om een aantal met # weer te geven in een conceptueel model (systeemschets, [[causalerelatiediagram|CRD]], [[voorraad-stroomdiagram|VSD]])? Bijvoorbeeld # wachtende klanten?'''
Regel 84: Regel 101:
 
:* het symbool dat je ervoor gebruikt (bijvoorbeeld n<sub>k</sub>);
 
:* het symbool dat je ervoor gebruikt (bijvoorbeeld n<sub>k</sub>);
 
:* de eenheid die je ervoor gebruikt (in dit geval dus #<sub>klant</sub>).
 
:* de eenheid die je ervoor gebruikt (in dit geval dus #<sub>klant</sub>).
 
'''Moet je een tijd in een sinusfunctie ook meenemen in je dimensieanalyse?'''
 
:Ja. Als je bijvoorbeeld de functie b·sin(c·t) hebt, moet c·t dimensieloos zijn. De grootheid c moet dus de dimensie tijd<sup>-1</sup> hebben, ofwel een frequentie zijn.
 
:Dit geldt voor meer wiskundige functies: ook het argument (= dat wat tussen haakjes staat) van een cosinus, of de exponent van een e-macht, moeten dimensieloos zijn.
 
:(Dit is niet zo’n bekend gegeven; reken je voorgangers daar dus niet streng op af.)
 
  
 
== Cybernetisch model ==
 
== Cybernetisch model ==
Regel 105: Regel 117:
 
'''Mogen er meerdere stromen één voorraad ingaan? Dus meerdere instroompijlen naar een rechthoek, met maar één uitstroompijl?'''
 
'''Mogen er meerdere stromen één voorraad ingaan? Dus meerdere instroompijlen naar een rechthoek, met maar één uitstroompijl?'''
  
:Dat mag, bijvoorbeeld als die stromen een verschillende oorzaak hebben. Zo kun je bij een stuwmeer van een [https://nl.wikipedia.org/wiki/Pompcentrale pompcentrale] op hetzelfde moment waterinstroom hebben door de pomp én door instromende riviertjes. Die stromen kunnen onafhankelijk van elkaar toe- of afnemen, dus dat kan in het VSD het best met twee pijlen weergegeven worden. Ook twee of meer uitgaande pijlen mag, overigens.
+
:Dat mag, bijvoorbeeld als die stromen een verschillende oorzaak hebben. Zo kun je bij een stuwmeer van een [https://nl.wikipedia.org/wiki/Pompcentrale pompcentrale] op hetzelfde moment waterinstroom hebben door de pomp én door instromende riviertjes. Die stromen kunnen onafhankelijk van elkaar toe- of afnemen, dus dat kan in het VSD het best met twee pijlen weergegeven worden. Ook twee of meer uitgaande pijlen mag, overigens &ndash; zie [[Voorraad-stroomdiagram#Bevolking|dit voorbeeld hier op de wiki]].
  
 
'''Ik moet in mijn model het totaal berekenen van twee voorraadgrootheden. Hoe geef ik dat aan in het VSD?'''
 
'''Ik moet in mijn model het totaal berekenen van twee voorraadgrootheden. Hoe geef ik dat aan in het VSD?'''
Regel 113: Regel 125:
 
'''Hoe geef je in een VSD de initiële waarde van een voorraadgrootheid weer?'''
 
'''Hoe geef je in een VSD de initiële waarde van een voorraadgrootheid weer?'''
 
:Niet. De initiële waarde van een voorraadgrootheid introduceert immers geen ''nieuwe'' grootheid in de zin van "een nieuwe eigenschap van het systeem". Bij operationalisatie heb je ook geen extra symbool nodig. Als een voorraadgrootheid in het operationele model variabele G wordt, dan geeft G<sub>0</sub> die grootheid op t=0 weer. De standaard beginwaarde voor voorraadgrootheden is 0. Als je de initialisatie expliciet wilt weergeven doe je dat d.m.v. een vergelijking direct voorafgaand aan de differentievergelijking, bijv. G<sub>0</sub> = 123, gevolgd door G<sub>t+&Delta;t</sub> = G<sub>t</sub> - Bin(G<sub>t</sub>, ''p'').
 
:Niet. De initiële waarde van een voorraadgrootheid introduceert immers geen ''nieuwe'' grootheid in de zin van "een nieuwe eigenschap van het systeem". Bij operationalisatie heb je ook geen extra symbool nodig. Als een voorraadgrootheid in het operationele model variabele G wordt, dan geeft G<sub>0</sub> die grootheid op t=0 weer. De standaard beginwaarde voor voorraadgrootheden is 0. Als je de initialisatie expliciet wilt weergeven doe je dat d.m.v. een vergelijking direct voorafgaand aan de differentievergelijking, bijv. G<sub>0</sub> = 123, gevolgd door G<sub>t+&Delta;t</sub> = G<sub>t</sub> - Bin(G<sub>t</sub>, ''p'').
:N.B. In Vensim kun je de initialisatie wel grafisch weergeven, maar dat is een kunstgreep t.b.v. het kunnen doorrekenen van het model. Bij implementatie in Excel kun je de beginwaarde invullen op de rij die correspondeert met t=0.
+
:N.B. In Vensim kun je de initialisatie wel grafisch weergeven, maar dat is een kunstgreep t.b.v. het kunnen doorrekenen van het model. '''Gebruik deze mogelijkheid dus niet!''' Bij implementatie in Excel kun je de beginwaarde invullen op de rij die correspondeert met t=0.
  
 
== Tijdsafhankelijke exogene grootheden als functies weergeven ==
 
== Tijdsafhankelijke exogene grootheden als functies weergeven ==
 
'''Als in de onderzoeksvraag wordt gesteld dat bepaalde grootheden gegeven zijn, dan zijn die exogeen. Maar als je tijdsafhankelijke variabelen als functies van tijd t moet weergeven, dan zijn die variabelen endogeen. Hoe zit dat?'''<br>
 
'''Als in de onderzoeksvraag wordt gesteld dat bepaalde grootheden gegeven zijn, dan zijn die exogeen. Maar als je tijdsafhankelijke variabelen als functies van tijd t moet weergeven, dan zijn die variabelen endogeen. Hoe zit dat?'''<br>
:Bij operationalisatie van een dynamische exogene grootheid kun je kiezen: óf je geeft die grootheid weer met een [[gegevensverzameling]] óf je geeft hem weer met een tijdsafhankelijke functie f(t). In het oorspronkelijke [[causalerelatiediagram]] of [[voorraad-stroomdiagram]] zal deze grootheden dan geen ingaande pijlen hebben. Als je hem operationaliseert m.b.v. een [[Notatie van vergelijkingen#Modelvergelijkingen|vergelijking]], bijv. X<sub>t</sub> = ''a''&middot;cos(b&middot;t), dan is X<sub>t</sub> inderdaad wél endogeen. Wat dan exogeen wordt zijn de [[parameter]]s in het [[functievoorschrift]], dus hier worden ''a'' en ''b'' invoervariabelen van het model. Die variabelen staan dan natuurlijk wel voor specifieke grootheden: in dit geval is ''a'' de ''amplitude'' van de fluctuatie in X terwijl ''b'' proportioneel is met de ''frequentie'' van de fluctuatie.
+
:Bij operationalisatie van een dynamische exogene grootheid kun je kiezen: óf je geeft die grootheid weer met een [[gegevensverzameling]] óf je geeft hem weer met een tijdsafhankelijke functie f(t). In het oorspronkelijke [[causalerelatiediagram]] of [[voorraad-stroomdiagram]] zal deze grootheid dan geen ingaande pijlen hebben. Als je hem operationaliseert m.b.v. een [[Notatie van vergelijkingen#Modelvergelijkingen|vergelijking]], bijv. X<sub>t</sub> = ''a''&middot;cos(b&middot;t), dan is X<sub>t</sub> inderdaad wél endogeen. Wat dan exogeen wordt zijn de [[parameter]]s in het [[functievoorschrift]], dus hier worden ''a'' en ''b'' invoervariabelen van het model. Die variabelen staan dan natuurlijk wel voor specifieke grootheden: in dit geval is ''a'' de ''amplitude'' van de fluctuatie in X terwijl ''b'' proportioneel is met de ''frequentie'' van de fluctuatie.
 
:Kies je voor operationalisatie in de vorm van een functievoorschrift met parameters, dan is het wenselijk dat je de parametergrootheden ook opneemt in je conceptuele model(len). De oorspronkelijke endogene grootheid zal dan ingaande pijlen krijgen en op die manier endogeen worden.
 
:Kies je voor operationalisatie in de vorm van een functievoorschrift met parameters, dan is het wenselijk dat je de parametergrootheden ook opneemt in je conceptuele model(len). De oorspronkelijke endogene grootheid zal dan ingaande pijlen krijgen en op die manier endogeen worden.
 
== Tijdsafhankelijke exogene variabelen operationaliseren ==
 
  
 
'''Hoe stel ik de vergelijking van een "afgekapte" sinusfunctie op?'''<br>
 
'''Hoe stel ik de vergelijking van een "afgekapte" sinusfunctie op?'''<br>
Bij vraagstuk C en D moet je schommelingen in exogene variabelen geïdealiseerd weergeven m.b.v. een optelling van (co)sinusfuncties met verschillende amplitudes en periodes, waarbij je waarden < 0 opvat als 0. Hoe zet je dat in een modelvergelijking?
+
Bij een vraagstuk moet je schommelingen in exogene variabelen geïdealiseerd weergeven m.b.v. een optelling van (co)sinusfuncties met verschillende amplitudes en periodes, waarbij je waarden < 0 opvat als 0. Hoe zet je dat in een modelvergelijking?
  
 
:Maak eerst een modelvergelijking die het gewenste "grillig" flucturerende gedrag weergeeft. Je kunt zelf m.b.v een lijngrafiek in Excel nagaan of dat gedrag bij bepaalde parameterwaarden genoeg lijkt op het gedrag in de opgave.
 
:Maak eerst een modelvergelijking die het gewenste "grillig" flucturerende gedrag weergeeft. Je kunt zelf m.b.v een lijngrafiek in Excel nagaan of dat gedrag bij bepaalde parameterwaarden genoeg lijkt op het gedrag in de opgave.
 
:Een functie die bestaat uit optelling van ''a''&middot;cos(''n''&middot;t)  zal periodiek symmetrisch om de tijdas "kronkelen". Door er een constante bij op te tellen kun je er voor zorgen dat hij hoger of lager t.o.v. de tijdas ligt.
 
:Een functie die bestaat uit optelling van ''a''&middot;cos(''n''&middot;t)  zal periodiek symmetrisch om de tijdas "kronkelen". Door er een constante bij op te tellen kun je er voor zorgen dat hij hoger of lager t.o.v. de tijdas ligt.
 
:Om er voor te zorgen dat de functiewaarde 0 is wanneer f(t) < 0 gebruik je een [[Notatie van vergelijkingen#Conditionele vergelijkingen|conditionele vergelijking]] (met grote accolade).
 
:Om er voor te zorgen dat de functiewaarde 0 is wanneer f(t) < 0 gebruik je een [[Notatie van vergelijkingen#Conditionele vergelijkingen|conditionele vergelijking]] (met grote accolade).
 +
 +
== Dimensieanalyse ==
 +
 +
'''Moet je een tijd in een sinusfunctie ook meenemen in je dimensieanalyse?'''
 +
:Ja. Als je bijvoorbeeld de functie b·sin(c·t) hebt, moet c·t dimensieloos zijn. De grootheid c moet dus de dimensie tijd<sup>-1</sup> hebben, ofwel een frequentie zijn.
 +
:Dit geldt voor meer wiskundige functies: ook het argument (= dat wat tussen haakjes staat) van een cosinus, of de exponent van een e-macht, moeten dimensieloos zijn.
 +
:(Dit is niet zo’n bekend gegeven; reken je voorgangers daar dus niet streng op af.)
 +
  
 
'''Wij hebben een tijdsafhankelijke exogene variabele m.b.v. een functie geoperationaliseerd. Moeten we ook op die functie dimensieanalyse uitvoeren?'''
 
'''Wij hebben een tijdsafhankelijke exogene variabele m.b.v. een functie geoperationaliseerd. Moeten we ook op die functie dimensieanalyse uitvoeren?'''
: Dat is alleen nodig wanneer je de parameters in het functievoorschrift als grootheden benoemt die natuurlijke eenheden hebben. Als je bijvoorbeeld een exogene grootheid ''snelheid'' in je model hebt opgenomen en daarvoor als eenheid km/h hebt gekozen, en je wilt aangeven dat die snelheid als functie van de tijd verandert <u>'''zonder'''</u> de oorzaken daarvan in je model op te nemen, dan operationaliseer je hem als v<sub>t</sub> = f(t) waar f(t) dan een [[functievoorschrift]] is. Omdat alle grootheden waarvan ''snelheid'' afhankelijk zou kunnen zijn (denk aan versnellingen en vertragingen a.g.v. krachten) <u>'''buiten'''</u> de systeemgrenzen vallen (en dus niet benoemd worden en evenmin een eenheid hebben) is f(t) geheel abstract, en dan is het niet nodig om dimensieanalyse op het functievoorschrift van f uit te voeren.
+
: Ja. Lees de uitleg bij de voorgaande vraag en daarna dit voorbeeld. Wanneer je een flucturerende waterstand weergeeft als W<sub>t</sub> = A&middot;cos(2&pi;&middot;t / T), dan wordt W<sub>t</sub> (in m t.o.v [https://www.rijkswaterstaat.nl/zakelijk/open-data/normaal-amsterdams-peil NAP]) endogeen, en zijn de [[parameter]]s A en T exogeen. Je moet dan laten zien dat A de ''amplitude'' (in m) van de fluctuatie in de waterstand weergeeft, en T (in h) de ''periode'' van de fluctuatie. Als de tijd t ook eenheid h heeft is de vergelijking dimensioneel correct.
 +
 
 +
==Regelmatig terugkerende gebeurtenis==
 +
'''Hoe geef je in vergelijkingen (en in Excel) weer dat een gebeurtenis met een vaste frequentie optreedt?'''
 +
:Als die gebeurtenis ''f'' keer per uur optreedt, dan betekent dat dat er tussen twee opeenvolgende gebeurtenissen steeds 1/''f'' uur zit. Je kunt dat dan modelleren door behalve een binaire variabele (met 1 = "de gebeurtenis treedt op") een ''timer''-variabele aan je model toe te voegen. Zo'n ''timer'' kun je dan zien als een voorraadgrootheid (in uren) die per tijdstap &Delta;t uur afneemt. Op het moment dat die voorraad dan "op" zou raken is, vul je hem weer met de tussentijd 1/''f''. Zie [[Excel:Timer voor regelmatige gebeurtenis]] voor een voorbeeld.
  
 
== Gevoeligheidsanalyse ==
 
== Gevoeligheidsanalyse ==
Regel 167: Regel 189:
 
:Zie ook [[Experimenteel_ontwerp#Aantal_replicaties|de pagina over het experimenteel ontwerp]] en [[Bestand:TB112-replicaties.pdf]], waarin wordt uitgelegd hoe je snel veel replicaties kunt maken.
 
:Zie ook [[Experimenteel_ontwerp#Aantal_replicaties|de pagina over het experimenteel ontwerp]] en [[Bestand:TB112-replicaties.pdf]], waarin wordt uitgelegd hoe je snel veel replicaties kunt maken.
 
:Vaak gedraagt een model zich aan het begin nog even wat anders dan later, omdat de variabelen zich nog wat moeten aanpassen — dan kun je de de eerste zoveel tijdstappen uit de statistieken laten. Soms is een minimum of maximum niet zo zinnig, omdat een variabelewaarde blijft toenemen. In dat geval kun je bijvoorbeeld de stijging zelf (de toename gedurende een bepaalde tijd) gebruiken voor de statistiek.
 
:Vaak gedraagt een model zich aan het begin nog even wat anders dan later, omdat de variabelen zich nog wat moeten aanpassen — dan kun je de de eerste zoveel tijdstappen uit de statistieken laten. Soms is een minimum of maximum niet zo zinnig, omdat een variabelewaarde blijft toenemen. In dat geval kun je bijvoorbeeld de stijging zelf (de toename gedurende een bepaalde tijd) gebruiken voor de statistiek.
 +
 +
'''Moet je alle beschrijvende statistieken implementeren in Excel, óók als de uitvoervariabele een binaire variabele is?'''
 +
:Bij een probabilistisch model moet je '''altijd''' [[beschrijvende statistiek]]en berekenen. Bij binaire uitvoervariabelen lijken MIN en MAX niet echt relevant, maar je kunt er wel mooi mee controleren of de uitvoervariabele überhaupt wel van waarde verandert.
 +
:De standaarddeviatie σ is veel minder interessant dan het gemiddelde μ (want dát is de benadering van de kans ''p'' waar je naar op zoek bent), maar toch geeft die &sigma; informatie. Theoretisch (d.w.z. wiskundig afgeleid) is de standaarddeviatie van Bin(N, ''p'') gelijk aan √(''p''·(1-''p'')/N). Bij een binaire variabele met kans ''p'' op een 1 is N=1, dus is de standaarddeviatie in theorie √(''p''·(1-''p'')). Dit betekent dat je, als je het gemiddelde (over alle replicaties) μ van de binaire uitvoervariabele als kans ''p'' ziet, kunt checken of de waarde √(μ·(1-μ)) inderdaad dicht in de buurt zit van de standaarddeviatie (over alle replicaties) σ van de binaire uitvoervariabele. Net als MIN en MAX geeft dus ook σ informatie over of de uitvoer van je replicaties "klopt".
 +
 +
'''Onze grafieken met gemiddelde &mu; en &sigma; over steeds meer replicaties convergeren niet. Hoe kan dat?'''
 +
:Dat gebeurt typisch als je formule voor de berekening van het gemiddelde niet het juiste celbereik aangeeft.
 +
:Stel dat je in kolom '''R''' je uitvoerwaarde per replicatie hebt staan, en het gemiddelde over 1, 2, ..., N replicaties in de kolom '''S''' daarnaast berekent. Als je data in bijv. rij 5 begint, dan staat in cel '''S5''' de formule <tt>=GEMIDDELDE(R$5:R5)</tt>, in cel '''S6''' dan <tt>=GEMIDDELDE(R$5:R6)</tt>, enzovoorts (dus het celbereik wordt steeds 1 rij groter).
 +
:Twee fouten zijn snel gemaakt: Je kunt het '''dollarteken''' in <tt>R$5</tt> zijn vergeten, of je kunt in plaats van de '''dubbele punt''' een '''puntkomma''' hebben gebruikt (dus <tt>=GEMIDDELDE(R$5;R6)</tt>). Beide notaties zijn geldig in Excel, maar geven een heel andere uitkomst dan bedoeld.
 +
 +
==Histogrammen in verslaglegging==
 +
'''Moet je, als om een kansverdeling wordt gevraagd, bij <u>elk</u> experiment ook een histogram in je verslag opnemen?'''<br>
 +
Wij hebben een experimenteel ontwerp met 10 experimenten, en dan is 10 grafieken maken niet alleen veel werk, maar wordt het verslag ook erg lang.
 +
:Aparte histogrammen zijn '''niet''' nodig wanneer de kansverdelingen allemaal ongeveer dezelfde vorm hebben (en dat is meestal het geval). Het is dan voldoende om dat expliciet te vermelden (met verwijzing naar het histogram dat in &sect;3 staat), en dan in de overzichtstabel voor elkk experiment de vier beschrijvende statistieken te laten zien. Uit die μ, σ, MIN en MAX kun je dan al opmaken hoe de vorm verandert: lagere MIN en/of lager gemiddelde betekent bijv. dat de "bult" naar links verschuift, lagere standaarddeviatie dat de "bult" smaller is, hogere MAX dat de "staart" langer is.
  
 
== Notatie in verslag ==
 
== Notatie in verslag ==
Regel 177: Regel 213:
 
:waarbij dan wordt uitgelegd wat de kans p inhoudt, en '''niet'''  
 
:waarbij dan wordt uitgelegd wat de kans p inhoudt, en '''niet'''  
 
::<tt>=BINOMIALE.INV(1;K14;ASELECT())</tt>
 
::<tt>=BINOMIALE.INV(1;K14;ASELECT())</tt>
:In het <u>implementatie</u>hoofdstuk kan het bij bijzondere vergelijkingen (zoals de implementatie van sommen m.b.v. <tt>VERSCHUIVING</tt>, of van kansverdelingen zoals hierboven) zinvol zijn om de Excelformule te geven. Dat is echter niet verplicht, dus geen essentieel onderdeel van het verslag.
+
:In het <u>implementatie</u>hoofdstuk kan het bij bijzondere vergelijkingen (zoals de implementatie van sommen m.b.v. <tt>VERSCHUIVING</tt>, of van kansverdelingen zoals hierboven) zinvol zijn om de Excelformule te geven. Dat is echter <u>niet</u> verplicht, dus geen essentieel onderdeel van het verslag.
 +
 
 +
'''Kan Excel ook afronden op een aantal significante cijfers i.p.v. een aantal decimalen?'''
 +
:Helaas niet. Alleen het aantal decimalen kun je regelen. Doe dat ook zodat de decimale punt of komma binnen de kolommen recht uitgelijnd staat en je daardoor goed kunt zien of getallen toenemen of juist afnemen.
 +
:Kies ''per variabele'' een geschikt aantal decimalen!
 +
:Vermeld in je verslaglegging eventueel de significantie, en noem dan ook de beperking van Excel op dit gebied.
 +
:N.B. Zo'n vermelding is dan heel zorgvuldig, maar <u>niet</u> verplicht dus <u>geen</u> reden om een lagere beoordeling te geven.
  
 
== Voorkomen van kringverwijzing ==
 
== Voorkomen van kringverwijzing ==
  
 
'''Hoe voorkomen we een kringverwijzing in Excel?'''
 
'''Hoe voorkomen we een kringverwijzing in Excel?'''
:Een "kringverwijzing" in Excel ontstaat als je ''binnen dezelfde tijdstap'' (= rij in Excel) een variabele wilt berekenen op basis van een andere variabele, maar ook omgekeerd.
+
:Wanneer je een Excel-bestand opent en er verschijnt een waarschuwing dat er ''kringverwijzingen'' zijn aangetroffen, negeer die waarschuwing dan niet – je implementatie in Excel is dan fout. Excel laat je zelfs zien waar de fout zit: met blauwe stippen en pijlen worden de cellen aangewezen waar het mis gaat. Maak gebruik van die informatie!
:Als je bijvoorbeeld de bereidheid om in een rij te gaan staan berekent uit de nieuwe rijlengte, maar de nieuwe rijlengte ook wilt berekenen op basis van diezelfde bereidheid.
+
:Een "kringverwijzing" in Excel ontstaat als je in een formule in een cel verwijst naar de cel zelf, eventueel via andere cellen. Zoals wanneer er in een ALS-functie in C13 verwezen wordt naar E13, maar E13 gebruik maakt van de waarde van C13. Dan zou eerst de waarde van C13 bekend moeten zijn voordat de waarde van C13 bepaald kan worden, wat uiteraard niet mogelijk is.
 +
:Bijvoorbeeld wanneer je de bereidheid om in een rij te gaan staan berekent uit de nieuwe rijlengte, maar de nieuwe rijlengte ook wilt berekenen op basis van diezelfde bereidheid.
 
:Dit kun je voorkomen door de één van de twee te baseren op de ''vorige'' waarde. In dit geval is het logisch om de ''nieuwe'' rijlengte te bepalen op basis van de ''vorige'' bereidheid. Je kunt het je als volgt voorstellen: de ''nieuwe'' rijlengte is het resultaat van de ''oude'' rijlengte en de bereidheid die er op dat moment (in de vorige tijdstap dus) was. De ''nieuwe'' bereidheid (die weer zal gelden tot de volgende tijdstap) volgt uit de ''nieuwe'' rijlengte.
 
:Dit kun je voorkomen door de één van de twee te baseren op de ''vorige'' waarde. In dit geval is het logisch om de ''nieuwe'' rijlengte te bepalen op basis van de ''vorige'' bereidheid. Je kunt het je als volgt voorstellen: de ''nieuwe'' rijlengte is het resultaat van de ''oude'' rijlengte en de bereidheid die er op dat moment (in de vorige tijdstap dus) was. De ''nieuwe'' bereidheid (die weer zal gelden tot de volgende tijdstap) volgt uit de ''nieuwe'' rijlengte.
  
= Estafette B =
 
 
=== Vraagstuk A – Afleveren van pakketjes ===
 
'''Wordt het uurloon  aan het einde van de werkdag berekend door het totaal op één dag verdiende bedrag te delen door het aantal gewerkte uren?'''
 
:Goede vraag ter verduidelijking. Dat is inderdaad wat hier met "uurloon" bedoeld wordt.
 
 
=== Vraagstuk B – Bijvullen van flesjes met ontsmettingsvloeistof ===
 
 
=== Vraagstuk C – "Corona-proof" houden van winkelcentrum ===
 
'''Is het bij een VSD correct om een wisselwerking tussen twee voorraadgrootheden te hebben?'''<br>Dus tussen twee rechthoeken een dubbele pijl heen én een dubbele pijl terug, bijv. van het plein naar winkel A en van winkel A terug naar het plein?
 
:Dat is zeker heel goed mogelijk. In Vensim is het wel even wat werk om de layout OK te krijgen, maar het kan daarin wel netjes worden weergegeven.
 
 
'''Is het gewenste maximum aantal mensen op het plein niet ook een "gegeven"?'''
 
:Inderdaad had dat gewenste maximum aantal mensen ook als "gegeven" moeten worden vermeld. Bedenk wel dat de BOA's (net als een thermostaat) bij het handhaven '''twee''' grenswaarden zullen hanteren: één waarboven ze beginnen met weren, en een waaronder ze weer stoppen met weren.
 
 
'''Er wordt niet aangegeven hoelang men op het plein is of een kans dat ze daar zijn of iets dergelijks. Is er een looptijd die we weten?'''
 
:Eigenlijk is de situatie op het plein niet zo anders dan die in een winkel. Iemand komt het plein op, loopt daar even, en gaat dan een winkel in of het plein af. Het plein overlopen duurt niet zo lang, maar sommige mensen gaat misschien even op een bankje zitten, of blijven staan praten. Daar kun je wel een 'verhaal' van maken met bijbehorende gemiddelde verblijftijd op het plein.
 
:Na die verblijftijd gaan de mensen van het plein volgens een te kiezen verdeling een van de winkels in, of verlaten ze het winkelcentrum.
 
 
=== Vraagstuk D – Duo’s samenstellen voor estafette ===
 
 
'''Welke kansverdeling kies je om een kans lineair te laten toenemen?'''
 
:Je bedoelt: "Hoe kan ik de ''kans'' op een gebeurtenis lineair laten toenemen?" Een kans is immers gewoon een getal tussen 0 en 1. Om een kans ''p'' lineair toe te laten nemen gebruik je een vergelijking, bijvoorbeeld (simpel) ''p''<sub>t</sub> = 0.01&middot;t, of (netter) als een differentievergelijking ''p''<sub>t+&Delta;t</sub> = ''p''<sub>t</sub> + &alpha;. Die kans kun je dan weer gebruiken als parameter voor (bijvoorbeeld) een binomiale verdeling. ''N.B. Zorg er in je vergelijking wel voor dat de waarde van ''p'' altijd tussen 0 en 1 zal liggen.''
 
 
=== Vraagstuk E – Ernstige ziekteverschijnselen ===
 
'''Hoe bereken je de tijd totdat het ziekenhuis voor het eerst patiënten moet weigeren?'''
 
:Dit is gelijk aan het vroegste tijdstip waarop het aantal nieuw aankomende patiënten groter is dan het aantal nog vrije bedden. Dat kun je op dezelfde manier wiskundig weergeven als "het moment waarop het bootje de overkant bereikt" bij [[ModEst:Q%26A_lopende_estafette#Vraagstuk_A_.E2.80.93_Afwijkend_bootje|vraagstuk A van estafette A]].
 
 
'''Hoe bereken je de uitstroom uit het ziekenhuis?'''
 
:Hoe je in een probabilistisch model de uitstroom uit een voorraadgrootheid o.b.v. een gemiddelde verblijftijd berekent wordt uitgelegd in het artikel over het [[voorraad-stroomdiagram]].
 
 
=== Vraagstuk F – Fanatieke feestgangers ===
 
 
=== Vraagstuk G – Gespreid downloaden graag! ===
 
  
 
= Estafette A =
 
= Estafette A =
  
=== Vraagstuk A – Afwijkend bootje ===
+
=== Vraagstuk A – Accu maakt autonoom? ===
'''Hoe bereken je hoe lang het duurt voordat het bootje de overkant bereikt?'''<br>
 
Gevraagd wordt om de afgelegde afstand. Het bootje vaart met constante snelheid v, dus is de afstand ''v''&middot;t maar dan voor t op het moment dat het bootje de overkant bereikt. Hoe noteer je dat in een vergelijking?
 
:De positie van het bootje is (zo blijkt uit de voorbeeldgrafiek) tijdafhankelijk: (''x''<sub>t</sub>, ''y''<sub>t</sub>) met beginpositie (0, 0). Geef je de breedte van de rivier weer als variabele ''b'', dan is het bootje aan de overkant zodra ''x''<sub>t</sub> &ge; ''b''. Je zoekt dus naar de ''laagste waarde'' van t waarvoor ''x''<sub>t</sub> &ge; ''b''. De vergelijking voor die waarde noteer je als t<sub>eind</sub> = min({t | ''x''<sub>t</sub> &ge; ''b''}). In woorden staat daar dan: "De eindtijd is gelijk aan de laagste waarde in de [[verzameling]] van tijdstippen t waarvoor geldt dat ''x''<sub>t</sub> groter is dan ''b''". Zie ook: [[Notatie van vergelijkingen]]
 
 
 
=== Vraagstuk B – Beheer van waterbassins ===
 
'''Hoe bereken je het tijdstip waarop er tekort aan water ontstaat?'''<br>
 
De tweede onderzoeksvraag vraagt op welk tijdstip er een tekort aan water ontstaat (per bassin). Het lijkt mij dat dit af te lezen is aan de grafiek: wanneer de waterhoeveelheid 0 bereikt, is er een tekort aan water. Hoe geef je dit weer als modelvergelijking?
 
:Inderdaad kun je dit aflezen aan de grafiek, precies zoals je het omschrijft. Wiskundig gezien ben je op zoek naar de waarde van t waarbij de waterhoeveelheid Q ''voor het eerst'' nul wordt. Dat kun je ook formuleren als "de laagste waarde van t waavoor geldt dat Q<sub>t</sub> = 0". Wiskundig noteer je dit dan als t<sub>tekort</sub> = min({t | Q<sub>t</sub> = 0}). Zie ook de vergelijkbare vraag bij vraagstuk A.
 
 
 
'''Is de formule V<sub>A, t+1</sub> = V<sub>A, t</sub> + (I<sub>A</sub> - B<sub>A</sub> - I<sub>B</sub>)*1 tijdsafhankelijk?'''
 
:Hoeveel meer bewijs van tijdsafhankelijkheid wil je hebben als 't+1' en 't' expliciet in de formule staan?
 
 
 
=== Vraagstuk C – Curtailment vanwege congestie op het netwerk ===
 
'''In de beschrijving van vraagstuk C zijn grafieken van wind en zon als voorbeeld gegeven. Hoe maak je zo'n functie met sinussen?'''
 
:In het geval van de zonne-energie gaat het om een sinus met een ''lage frequentie'' en een ''grote amplitude'' met daar bovenop een sinus met een ''hogere frequentie'' en een ''fluctuerende amplitude''. De fluctuerende amplitude is verkregen door de hoogfrequente sinus te vermenigvuldigen met een sinus die een frequentie heeft tussen die van de andere twee sinussen in. De laagfrequente sinus modelleert het dagritme, en de hoogfrequente sinus bootst de kortere fluctuaties na, zoals 'wolken voor de zon'. In het voorbeeldplaatje zie je ook dat de zonnefunctie niet symmetrisch rond de tijdas ligt: er is een constante bij de functie opgeteld.
 
:Uit deze beschrijving blijkt dat voor de zonne-intensiteit I bijvoorbeeld kan gelden:
 
::I(t) = a·sin(&alpha;t) + b·sin(&beta;t)·sin(&gamma;t) + c,
 
:waarin a > b en &alpha; < &beta; < &gamma;. De waarde van &alpha; moet zo gekozen worden dat er een 24-uurs-cyclus ontstaat (hint: reken 24 uur om naar 2&pi;). Het stuk b·sin(&beta;t) is de fluctuerende amplitude van de sin(&gamma;t). Je moet er ook voor zorgen dat de uitkomst nul wordt wanneer de functie onder nul zakt (want negatieve zonnestraling bestaat niet).
 
:Door wat te spelen met de waarden van de overige parameters, kun je in de buurt komen van de voorbeeldplaatjes (die niet meer zijn dan voorbeelden, dus je hoeft zeker niet exact hetzelfde te krijgen).
 
:Voor de windenergie kun je op een overeenkomstige manier een functie bouwen, maar daar hoeft de laagfrequente sinus niet een periode van 24 uur te hebben.
 
  
'''Hoe zorg je dat de hoogste piek van het opgewekte vermogen gelijk is aan de waarde van een invoervariabele?'''
+
=== Vraagstuk B – Besparen met een buffer? ===
:Inderdaad kun je het maximum vermogen P<sub>MAX</sub> van een energiepark als invoervariabele zien. De functie vermenigvuldig je dan met P<sub>MAX</sub>. Je moet er dan alleen nog voor zorgen dat die functie hooguit waarde 1 heeft.
 
:Het bereik van een standaard (co)sinusfunctie is het interval [-1, 1]. De som van M (co)sinusfuncties ''a''<sub>1</sub>&middot;sin(''b''<sub>1</sub>&middot;t) + ''a''<sub>2</sub>&middot;sin(''b''<sub>2</sub>&middot;t) + ... + ''a''<sub>M</sub>&middot;sin(''b''<sub>M</sub>&middot;t) zal daarom maximaal gelijk zijn aan S&nbsp;=&nbsp;''a''<sub>1</sub>+''a''<sub>2</sub>+ ... +''a''<sub>M</sub>. Om ervoor te zorgen dat de functie die het vermogen van een energiepark beschrijft maximaal P<sub>MAX</sub> is moet je dus vermenigvuldigen met P<sub>MAX</sub> maar dan ook delen door S.
 
  
'''Moet je om de windenergie te berekenen de windsnelheid omrekenen naar vermogen?'''
+
=== Vraagstuk C – Compenseren van onbalans ===
:Nee: de in de opdracht gegeven voorbeeldfuncties beschrijven al ''het energetische vermogen''; een omrekening is dus niet meer nodig.
 
:(Het vermogen is evenredig met de derde macht van de windsnelheid, maar dan is er ook nog een maximum per turbine boven een bepaalde windsnelheid. Dat wordt in dit geval onnodig ingewikkeld.)
 
  
=== Vraagstuk D – Docent krijgt het druk ===
+
'''Wat is de rol van die binaire grootheid "meting JA/NEE"?'''<br>
'''Onze lijndiagram met het aantal uren rust van de docent ziet er anders uit dan de voorbeeldgrafiek in de opgave. Hoe kan dat? En is dat erg?'''
+
Ik snap niet precies wat er gezegd wordt met deze zin van de aanwijzing: De invloed van de meetfrequentie kun je niet direct in een diagram weergeven. Om weer te geven dat tussen twee meetmomenten in geen bijregeling plaatsvindt kun je een exogene binaire grootheid "meting? (JA/NEE)" toevoegen die alleen waarde 1 heeft als er gemeten wordt". Zou u mij dit een beetje kunnen uitleggen?
:De vorm van de grafiek volgt niet alleen uit de vergelijkingen die je hebt opgesteld, maar ook uit de lengte van je tijdstap.
 
:Wanneer je "rust" voor de docent opvat als "een tijdstap waarin er geen vragen voor de docent zijn" (dus een tijdstap waarvoor de voorraadgrootheid nul is), dan is de uitvoervariabele dus het aantal van dergelijke tijdstappen in de afgelopen 24 uur.
 
:Meestal geldt: hoe kleiner de tijdstap, hoe "gladder" het verloop van de grafiek. De voorbeeldgrafiek is gebaseerd op een tijdstap van 1 uur. Dat maakt implementatie in Excel eenvoudiger omdat dan elke rij 1 uur is en je met de functie AANTAL.ALS(''celbereik'', 0) het aantal uur "rust" in dat celbereik kunt tellen. Een celbereik van 24 uur noteer je dan in Excel bijvoorbeeld als <tt>C10:C33</tt>.
 
:Wanneer je in je toelichting bij je modeluitkomsten goed kunt verklaren waarom je grafiek een bepaalde vorm heeft, dan is het niet erg als hij er anders uitziet dan de voorbeeldgrafiek.
 
  
=== Vraagstuk E – Eén winkelmandje per klant ===
+
:Bijzonder aan dit vraagstuk is dat (1) je data hebt met een tijdstap van 0,1 s en je voor het beantwoorden van de onderzoeksvraag je model ook de tijdstap Δt = 0,1 s moet hebben, terwijl (2) de tijd tussen twee metingen wél een onafhankelijke grootheid is in je onderzoeksvraag.
'''Hoe bereken je de maximale lengte van de wachtrij?'''<br>
+
:Je model moet dus kunnen weergeven dat het systeem maar één keer in de zoveel tijdstappen de resulterende onbalans waarneemt en alleen dán het systeem bijregelt (indien nodig). Het compensatiesysteem moet dus een klok bevatten die met vaste tussenpozen van N tijdstappen aangeeft "NU (op dit tijdstip t) wordt de onbalans gemeten".
Gevraagd wordt om niet alleen het verloop van de wachtrijlengte te laten zien, maar ook te bepalen hoeveel mensen staan te wachten wanneer de wachtrij het langst is. Hoe noteer je dat in een vergelijking?
+
:In een conceptueel model geef je zo'n het bestaan van zo'n klok dan simpelweg weer als een exogene binaire grootheid "meting? JA/NEE" waarbij je dan toelicht dat deze grootheid ééns in de N tijdstappen 1 is en de rest van de tijd 0. Door een causale relatie van deze binaire grootheid naar de regelingsgrootheid te trekken kun je dan aangeven dat die regeling alleen op de meetmomenten kan veranderen.
:Als je de uitvoervariabele W<sub>t</sub> gebruikt om het aantal wachtende klanten weer te geven, en ook W<sub>MAX</sub> als uitvoervariabele neemt, dan kun je de vergelijking voor de hoogste waarde noteren als:
+
:Hoe je dit gedrag met een modelvergelijking weergeeft staat '''[[ModEst:Q%26A_lopende_estafette#Regelmatig_terugkerende_gebeurtenis|hier op de Q&A Algemeen]]''' uitgelegd, maar dat heb je pas nodig bij de operationalisatie (Stap 2).
::W<sub>MAX</sub> = max(W<sub>t</sub>) voor t &isin; [0, t<sub>eind</sub>]
 
:of m.b.v. de formule-editor nog iets compacter:
 
::[[Bestand:maxWt.png|x20px]]
 
:In woorden staat daar dan: "... de hoogste waarde van W<sub>t</sub> voor alle tijdstippen t op het gesloten interval tussen 0 en t<sub>eind</sub> (met t<sub>eind</sub> de eindtijd van de simulatie). Bij de tweede notatie wordt het [[Domein van een variabele|domein]] van t niet expliciet gedefinieerd, en dan moet je het lezen als "het maximum over ''alle'' tijdstippen t".
 
  
=== Vraagstuk F Fietsers maken noodstop ===
+
=== Vraagstuk D Delta-21 pomp/turbine ===
'''Hoe kunnen we krachten, versnellingen en vertragingen in een CRD zetten?'''
 
:Voor de fysische grootheden ''versnelling'' en ''snelheid'' is een [[Causalerelatiediagram|CRD]] een beetje problematisch.
 
:Of een versnelling (de a in F=m·a dus) nu ''toeneemt'' of ''afneemt'', de snelheid blijft steeds ''toenemen''. Dat is lastig weergeven in een CRD.
 
:Pas wanneer de versnelling ''negatief'' wordt, gaat de snelheid afnemen (in het gewone spraakgebruik heet het dan "vertraging", maar fysische gezien is het een negatieve versnelling).
 
:Je kunt dit daarom beter weergeven in een [[Voorraad-stroomdiagram|VSD]], met een 'versnelling' als instroom en een 'vertraging' als uitstoom voor de voorraadgrootheid 'snelheid'.
 
:(Helemaal blij is de fysicus dan nog steeds niet, want de grootheid a springt dan van de instroom naar de uitstroom als deze negatief wordt. Maar in een vraagstuk waar een fietser óf harder trapt om te versnellen óf in de remmen gaat, is daar wel overheen te komen.)
 
  
'''Hoe komen we aan de formule voor de volgafstand?'''
+
=== Vraagstuk E – Elektriciteitskabel warmt op ===
:Niet.
 
:Je moet een ''dynamisch'' model maken, wat inhoudt dat je tijdstap na tijdstap bepaalt wat de nieuwe snelheden zijn (op basis van de oude snelheden en de versnelling of vertraging) en de daaruit volgende nieuwe locaties (op basis van de nieuwe snelheden). De volgafstand is dan het verschil tussen de locaties (vergeet niet de lengte van een fiets in mindering te brengen), dus die is een ''uitvoervariabele'' van het model.
 
  
'''Moeten we de remweg berekenen?'''
+
=== Vraagstuk F – Flow door warmtenet regelen ===
:Nee. De vraag gaat over de ''volgafstand'' en het eventueel ''botsen'' van de fietsers. Daar heb je de remweg niet voor nodig. Een ''formule'' afleiden voor de remweg is dus ook niet nodig (en zou, net als bij de vorige vraag, voorbijgaan aan het feit dat je een ''dynamisch'' model moet maken: de remweg zou dus moeten volgen ''uit de modelberekeningen'', niet uit een kant-en-klare formule).
 
  
=== Vraagstuk G – Gistproductie ===
+
=== Vraagstuk G – Gas besparen kun je thuis ===
'''Doordat we geen gegevens hebben over de batchtijd, de vermenigvuldigingstijd, met hoeveel bacteriën het systeem begint en hoeveel bacteriën erover blijven na de spoeling lukt het ons niet om een model te maken. Wat nu?'''
 
:Van sommige grootheden (bijv. de [https://nl.wikipedia.org/wiki/Dichtheid_(natuurkunde) dichtheid] en de [https://nl.wikipedia.org/wiki/Soortelijke_warmte soortelijke warmte] van een stof, of de [[efficiëntie]] van een energiecentrale) kun je de waarde opzoeken. Voor onbekende grootheden (zoals hier de eigenschappen van het productieproces en de bacteriestam) doe je verstandige aannames. Houd die dan simpel zodat je het modelgedrag kan controleren met eenvoudige berekeningen.
 
:Neem in dit vraagstuk als batchduur dus eerst 1 uur, en neem als tijdstap van je model dan die batchduur (dus ook 1 uur). Neem voor de groeifactor en de desinfectiefactor "ronde getallen": een beginwaarde 1000 en groeifactor 1,1 zou dan groei 1000&rarr;1100&rarr;1210 enz. moeten geven, en bij een desinfectiefactor van bijv. 90% zou je een daling van bijv. 10.000&rarr;1000&rarr;100 enz. moeten zien. Voor de drempelwaarden van de regeling van dit cybernetische systeem kies je dan bijv. om bij 10.000 of meer bactieriën te beginnen met spoelen en dan pas te stoppen met spoelen zodra het aantal bacteriën onder de 1000 komt. Dan kun je goed controleren of de grafiek van je uitvoervariabele tussen die twee waarden "pingpongt" (met een beetje ''"overshoot"'' en ''"undershoot"'', zie bijv. [https://nl.wikipedia.org/wiki/Cv-regeling#Kamerthermostaat_met_anticipatie deze uitleg van de werking van een thermostaat]).
 
  
= Warmloopestafette =
+
=== Vraagstuk H – Heet-watervat verliest warmte ===
M.b.t. de vraagstukken van de warmloopestafette zijn geen vragen gesteld.
 

Huidige versie van 27 nov 2022 om 17:15

Op deze pagina verzamelen we antwoorden op vragen die n.a.v. de lopende estafette worden gesteld.

Kijk a.j.b. eerst of je hier al antwoord vindt op je vragen voordat je een vraag stelt via Presto.

Voor niet-inhoudelijke vragen m.b.t. de modelleerestafette is er deze algemene Q&A. Faq.png

Hulp vragen

Hoe vraag ik om hulp?

In Presto staat onderaan de opdracht-schermen (voor uploaden en review) een knop waarmee je een vraag-dialoog kunt oproepen.
Mail dus niet rechtstreeks, tenzij het absoluut noodzakelijk is dat je een bestand meestuurt.

Kan ik ook naar de kamer van een van de docenten gaan met een vraag?

Nee, want we behandelen de gestelde vragen zo veel mogelijk in volgorde van binnenkomst.
Het zou niet fair zijn tegenover eerdere vragenstellers als we "langslopers" dan sneller zouden helpen.

Helpt het als ik mijn vraag afsluit met "Ik hoor graag zo spoedig mogelijk van u"?

Nee. Integendeel. Zeker niet als je dat mailtje vrijdagavond half zeven verstuurt.
Wij doen ons best binnen redelijke tijd te antwoorden, maar wij hebben ook andere bezigheden (zoals familie, vrienden en hobby's).

Moet ik over elke beslissing die ik neem in de estafette een vraag sturen naar de docenten?

Nee, maak vooral zelf je modelleerkeuzes! Als je aan het modelleren bent, moet je heel veel kleine en grote beslissingen nemen. Vaak zijn er meerdere goede mogelijkheden. Als je een aanname kunt onderbouwen, hoef je daar geen toestemming voor te vragen. Denk vooral aan Ockham.

Verwijzing naar de Q&A

Mag in de tekst verwezen worden naar de Q&A van de wiki, zonder naar een concreet punt te verwijzen? Onze voorgangers geven zelf geen toelichting over dit punt en verwijzen alleen maar. Is dit toegestaan?

Je mag naar iedere bron verwijzen, mits er een goede bronvermelding bij staat (in dit geval dus de URL van de Q&A in APA-stijl). Mooier is natuurlijk om wat er in de Q&A staat te verwerken in het verslag. In dat geval is het, omdat het een onderwijssituatie is en de Q&A onderdeel is van het lesmateriaal, niet per se nodig een bronvermelding op te nemen, al kan dat nooit kwaad natuurlijk.

Algemene modelleervragen

Onderzoeksvraag

Mag je bij "... gegeven x, y en z" veronderstellen dat die gegeven grootheden constant zijn?

Indien er geen reden is om aan te nemen dat exogene grootheden dynamisch zijn, dan mag je ze constant veronderstellen.
Bij sommige vraagstukken wordt expliciet aangegeven welke exogene grootheden tijdsafhankelijk zijn en daarom bij de operationalisatie (estafettestap 2) als een functie van de tijd moeten worden gedefineerd, d.w.z. x = f(t) (zie Functievoorschrift).

De casus vraagt een probabilistisch model en in de onderzoeksvraag wordt naar een kansverdeling gevraagd. Als wij in de vergelijkingen al weergeven welke kansverdeling gebruikt moet worden, geven wij al antwoord op de onderzoeksvraag. Wat wordt hier bedoeld?

Als in de onderzoeksvraag naar een kansverdeling wordt gevraagd (zoals "Wat is de kansverdeling van de wachttijd?"), wordt een empirische verdeling bedoeld: een verdeling die is gebaseerd op de uitkomsten van het model.
Stel dat dit de berekende wachttijden zijn in minuten (op grootte gesorteerd): 1,3; 1,5; 1,5; 1,9; 2,1; 2,3; 2,7; 3,1; 3,9; 4,4.
Dan kun je bijvoorbeeld een histogram maken voor de wachttijden binnen intervallen [0, 1>, [1, 2>, [2, 3>, [3, 4> en [4, 5>, die respectievelijk 0%, 40%, 30%, 20% en 10% hoog zijn.

Wanneer wij een reeks uitkomsten hebben, welke functie in Excel kan dan worden gebruikt om hier een kansverdeling uit te halen?

Daar is geen functie voor in Excel. Het is dan de bedoeling dat je de empirische verdeling laat zien in een histogram zoals beschreven in de vraag hierboven. Lees deze tekst hier op de wiki.

Modelschema

Hoe kunnen wij het onderscheid tussen invoervariabelen en interne variabelen het best zien?

Een interne variabele wordt door het model berekend op basis van de gekozen waarden van de invoervariabelen. De invoervariabelen zélf worden door het model niet veranderd.
Als je bijvoorbeeld een discretetijdmodel maakt om te bepalen hoe lang het duurt om water aan de kook te brengen om thee te zetten, zijn de begintemperatuur van het water en het vermogen van de waterkoker invoervariabelen, zijn de temperatuur van het water op een bepaald moment (die dus door het model berekend wordt) en de verstreken tijd interne variabelen, en is de tijd die nodig is om 100 °C te bereiken (die dus ook berekend wordt) de uitvoervariabele.

Moet je in het modelschema al stochasten zetten of pas in de modelvergelijkingen?

Een stochastische variabele hoort in het modelschema te staan. Schrijf je in een vergelijking bijvoorbeeld:
A = 123 + B / U(1, C)
dan is U(1, C) wel stochastisch, maar geen variabele maar een "anoniem" toevalsgetal uit een uniforme kansverdeling, vergelijkbaar met de "anonieme" constante 123: die vermeld je ook niet in het modelschema. De parameter C is wél een variabele die in het modelschema moet staan.
Noteer je deze vergelijking als twee aparte, dus bijvoorbeeld:
A = 123 + B/D
D ~ U(1, C)
dan is D een stochastische variabele, en hoort daarom in het modelschema te staan.

Systeemschets

Mag je in de systeemschets gebruik maken van een legenda of moet alles in de schets zelf staan?

Een systeemschets moet direct herkenbaar zijn, dus zou er geen legenda nodig moeten zijn (een legenda is nodig voor symbolische representatie, en afgezien van de tekst van de labels hoort een systeemschets geen symbolische elementen te bevatten).

Onze voorganger heeft de systeemschets niet in het Powerpoint-document gezet. Daardoor kunnen wij die niet aanpassen of checken over de bronvermelding klopt. Heeft dit gevolgen voor de beoordeling?

Het indienen van een diagram in een formaat dat je kunt aanpassen is een service die je biedt aan je opvolger. Het is wenselijk dat je dat doet, maar geen essentieel onderdeel van de opdracht. Het is dus ook nog steeds toegestaan om bijvoorbeeld een foto van een handgetekend diagram te gebruiken, of een afbeelding gemaakt m.b.v. een ander tekenpakket. Dat geldt ook voor systeemschetsen.

Conceptueel model

Kan ik meerdere modellen opnemen in het conceptuele model?

Is het mogelijk om meerdere modellen, zoals een voorraad-stroomdiagram, toestandsdiagram en cybernetisch model, op te nemen in de conceptualisatie van het systeem?

De genoemde modellen kunnen ieder afzonderlijk voldoende zijn als conceptueel model, maar je conceptuele model moet alle concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Het kan dus goed zijn dat je meerdere diagrammen nodig hebt in je representatie van je conceptuele model.

Is een causalerelatiediagram / toestandsdiagram / voorraad-stroomdiagram verplicht?

Nee. De conceptualisatie moet alle concepten en onderlinge relaties weergeven. Als dat kan met één type diagram, is het niet nodig er meer op te nemen. Mocht dat het gekozen conceptuele model erg verduidelijken, dan mag het uiteraard wel.
Wanneer gevraag wordt een cybernetisch model te construeren, is het niet verplicht dit ook te tekenen. Het kan duidelijk zijn om een plaatje toe te voegen (en dan een op de casus toegespitst plaatje, niet van het standaard CM), maar noodzakelijk is dit niet: het kan ook duidelijk in tekst weergegeven worden (zie het voorbeeld bij de instructies voor Stap 1).

Moet je in een conceptueel model ook natuurconstanten opnemen?

Je conceptuele model moet alle relevante grootheden in het systeem benoemen. Het maakt niet uit of ze constant zijn of van waarde kunnen veranderen. Natuurconstanten zoals bijv. de valversnelling zijn grootheden die meestal niet expliciet als "gegeven" in de onderzoeksvraag worden vermeld, maar wel relevant kunnen zijn en dan dus in je model benoemd moeten worden.
N.B. Wiskundige constanten zoals π zijn geen natuurconstanten, dus die laat je weg.

Alle concepten en relaties in een toestandsdiagram?

Wij hebben voor een toestandsdiagram gekozen, en het wordt daarin heel onoverzichtelijk om alle grootheden toe te voegen. Op de wikipagina wordt niet echt goed duidelijk hoe dit moet met de toestandsdiagram. Moeten alle grootheden uit de systeemschets aangegeven worden in het toestandsdiagram?

Je conceptuele model moet alle concepten en onderlinge relaties weergeven die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Als dit niet duidelijk kan in een toestandsdiagram, dan is een toestandsdiagram in dit geval blijkbaar niet voldoende als conceptueel model (dat geldt wel vaker voor een toestandsdiagram overigens). Je zult daarnaast dus nog een andere representatie moeten gebruiken.

Moet je bij grootheden in een conceptueel model aangeven of het om een kans of een kansverdeling gaat?

In een VSD of CRD of systeemschets horen alleen grootheden te staan. Kansverdelingen zijn geen grootheden -- probeer maar: "De kansverdeling van het aantal lekke banden neemt toe." is geen correcte en betekenisvolle Nederlandse zin, maar "Het aantal lekke banden neemt toe." is dat wel.
Voor "kans" ligt dat anders: kansen zijn wel grootheden: "De kans op een lekke band neemt toe." is wél een grammaticaal correcte en betekenisvolle zin. Vandaar dat je in een VSD regelmatig kansen zult zien staan, vaak als exogene grootheden omdat kansen vaak als gegeven moeten worden beschouwd. Maar let op: ze kunnen ook endogeen zijn. Wanneer bijvoorbeeld gegeven is dat een kans lineair toeneemt, kun je die als een voorraadgrootheid weergeven met een constante instroom.
Een kans kan zelfs de uitvoervariabele zijn. Bij een probabilistisch model bepaal je kansen o.b.v. replicaties, dus door het model een (groot) aantal keren door te rekenen. Dat geeft dan een kansverdeling. Met een kans wordt de kansverdeling op een binaire variabele bedoeld, waarbij 1 weergeeft dat de gebeurtenis waarvoor de kans moet worden bepaald tijdens de modelrun optreedt. In zulke gevallen is het beter om in je conceptuele model die binaire grootheid op te nemen (bijv. "lekke band JA/NEE"). Op die manier maak je ondubbelzinnig duidelijk dat je model straks óf een 1 óf een 0 als uitvoerwaarde moet hebben.

Is het toegestaan om een aantal met # weer te geven in een conceptueel model (systeemschets, CRD, VSD)? Bijvoorbeeld # wachtende klanten?

Het teken # (dat inderdaad voor "aantal" staat) gebruiken we om eenheden te noteren wanneer het gaat om dimensieloze grootheden die een aantal aangeven. Zie deze uitleg m.b.t. dimensieanalyse.
Datzelfde teken gebruiken in de naam van een grootheid zou tot verwarring kunnen leiden. Noteer de grootheid "aantal wachtenden" daarom niet als "# wachtenden". Het gebruikelijke symbool voor een grootheid die een aantal voorstelt, is n. In een operationeel model kun je het aantal wachtende klanten dus bijvoorbeeld noteren als variabele nk. Noteer de eenheid van grootheden die aantallen zijn wél als #, of liever nog als #klant (dus met datgene wat je telt als subscript).
Hou dus goed uit elkaar:
  • de naam van de grootheid zelf (bijvoorbeeld "aantal wachtenden");
  • het symbool dat je ervoor gebruikt (bijvoorbeeld nk);
  • de eenheid die je ervoor gebruikt (in dit geval dus #klant).

Cybernetisch model

Kan een cybernetisch model gebruikt worden als systeemschets?

Het diagram van het cybernetische model dat op de wiki staat, is te schematisch om te gebruiken als systeemschets.
Je kunt de systeemschets wel baseren op dat diagram, maar dan moeten alle onderdelen worden vervangen door direct herkenbare afbeeldingen.

Kan een cybernetisch model in stap 1 worden gebruikt in plaats van een causalerelatiediagram, voorraad-stroomdiagram of toestandsdiagram?

Het cybernetische model is een conceptueel model, want het is een representatie van een systeem waarin je concepten en hun onderlinge relaties weergeeft die volgens jou van belang zijn voor het beantwoorden van de onderzoeksvraag. Maar je kunt er meestal niet alle concepten en relaties die van belang zijn goed in kwijt, dus het kan geen causalerelatiediagram, voorraad-stroomdiagram of toestandsdiagram vervangen. Die diagrammen zijn óók conceptuele modellen, maar laten op een andere manier concepten en relaties in het systeem zien. Een cybernetisch model kan dus wel als aanvulling gebruikt worden, vooral om het deel van het systeem weer te geven dat voor de regeling zorgt, maar dat is bijna nooit genoeg om het hele conceptuele model te representeren.
Als je een cybernetisch model gebruikt, is het niet voldoende om het plaatje van de wiki rechtstreeks over te nemen. Je zult het dan moeten aanpassen door de gegeven termen specifieker te maken (in het geval van een thermostaat kunnen "werkelijke uitvoer" en "gewenste uitvoer" bijvoorbeeld "gemeten temperatuur" en "gewenste temperatuur" worden; "comparator" wordt dan "thermostaat").

Voorraad-stroomdiagram

Mogen er meerdere stromen één voorraad ingaan? Dus meerdere instroompijlen naar een rechthoek, met maar één uitstroompijl?

Dat mag, bijvoorbeeld als die stromen een verschillende oorzaak hebben. Zo kun je bij een stuwmeer van een pompcentrale op hetzelfde moment waterinstroom hebben door de pomp én door instromende riviertjes. Die stromen kunnen onafhankelijk van elkaar toe- of afnemen, dus dat kan in het VSD het best met twee pijlen weergegeven worden. Ook twee of meer uitgaande pijlen mag, overigens – zie dit voorbeeld hier op de wiki.

Ik moet in mijn model het totaal berekenen van twee voorraadgrootheden. Hoe geef ik dat aan in het VSD?

Stel dat je je voorraadgrootheden A en B hebt genoemd, en dat je het totaal dat je wilt berekenen C noemt. Teken C dan als een informatiegrootheid (dus geen rechthoek!), en teken een informatiepijl vanuit A naar C en ook zo'n pijl vanuit B naar C. Beide pijlen label je met een +. In de toelichtende tekst leg je uit dat het om een optelling gaat (voor zover dat niet al blijkt uit de naamgeving van C).

Hoe geef je in een VSD de initiële waarde van een voorraadgrootheid weer?

Niet. De initiële waarde van een voorraadgrootheid introduceert immers geen nieuwe grootheid in de zin van "een nieuwe eigenschap van het systeem". Bij operationalisatie heb je ook geen extra symbool nodig. Als een voorraadgrootheid in het operationele model variabele G wordt, dan geeft G0 die grootheid op t=0 weer. De standaard beginwaarde voor voorraadgrootheden is 0. Als je de initialisatie expliciet wilt weergeven doe je dat d.m.v. een vergelijking direct voorafgaand aan de differentievergelijking, bijv. G0 = 123, gevolgd door Gt+Δt = Gt - Bin(Gt, p).
N.B. In Vensim kun je de initialisatie wel grafisch weergeven, maar dat is een kunstgreep t.b.v. het kunnen doorrekenen van het model. Gebruik deze mogelijkheid dus niet! Bij implementatie in Excel kun je de beginwaarde invullen op de rij die correspondeert met t=0.

Tijdsafhankelijke exogene grootheden als functies weergeven

Als in de onderzoeksvraag wordt gesteld dat bepaalde grootheden gegeven zijn, dan zijn die exogeen. Maar als je tijdsafhankelijke variabelen als functies van tijd t moet weergeven, dan zijn die variabelen endogeen. Hoe zit dat?

Bij operationalisatie van een dynamische exogene grootheid kun je kiezen: óf je geeft die grootheid weer met een gegevensverzameling óf je geeft hem weer met een tijdsafhankelijke functie f(t). In het oorspronkelijke causalerelatiediagram of voorraad-stroomdiagram zal deze grootheid dan geen ingaande pijlen hebben. Als je hem operationaliseert m.b.v. een vergelijking, bijv. Xt = a·cos(b·t), dan is Xt inderdaad wél endogeen. Wat dan exogeen wordt zijn de parameters in het functievoorschrift, dus hier worden a en b invoervariabelen van het model. Die variabelen staan dan natuurlijk wel voor specifieke grootheden: in dit geval is a de amplitude van de fluctuatie in X terwijl b proportioneel is met de frequentie van de fluctuatie.
Kies je voor operationalisatie in de vorm van een functievoorschrift met parameters, dan is het wenselijk dat je de parametergrootheden ook opneemt in je conceptuele model(len). De oorspronkelijke endogene grootheid zal dan ingaande pijlen krijgen en op die manier endogeen worden.

Hoe stel ik de vergelijking van een "afgekapte" sinusfunctie op?
Bij een vraagstuk moet je schommelingen in exogene variabelen geïdealiseerd weergeven m.b.v. een optelling van (co)sinusfuncties met verschillende amplitudes en periodes, waarbij je waarden < 0 opvat als 0. Hoe zet je dat in een modelvergelijking?

Maak eerst een modelvergelijking die het gewenste "grillig" flucturerende gedrag weergeeft. Je kunt zelf m.b.v een lijngrafiek in Excel nagaan of dat gedrag bij bepaalde parameterwaarden genoeg lijkt op het gedrag in de opgave.
Een functie die bestaat uit optelling van a·cos(n·t) zal periodiek symmetrisch om de tijdas "kronkelen". Door er een constante bij op te tellen kun je er voor zorgen dat hij hoger of lager t.o.v. de tijdas ligt.
Om er voor te zorgen dat de functiewaarde 0 is wanneer f(t) < 0 gebruik je een conditionele vergelijking (met grote accolade).

Dimensieanalyse

Moet je een tijd in een sinusfunctie ook meenemen in je dimensieanalyse?

Ja. Als je bijvoorbeeld de functie b·sin(c·t) hebt, moet c·t dimensieloos zijn. De grootheid c moet dus de dimensie tijd-1 hebben, ofwel een frequentie zijn.
Dit geldt voor meer wiskundige functies: ook het argument (= dat wat tussen haakjes staat) van een cosinus, of de exponent van een e-macht, moeten dimensieloos zijn.
(Dit is niet zo’n bekend gegeven; reken je voorgangers daar dus niet streng op af.)


Wij hebben een tijdsafhankelijke exogene variabele m.b.v. een functie geoperationaliseerd. Moeten we ook op die functie dimensieanalyse uitvoeren?

Ja. Lees de uitleg bij de voorgaande vraag en daarna dit voorbeeld. Wanneer je een flucturerende waterstand weergeeft als Wt = A·cos(2π·t / T), dan wordt Wt (in m t.o.v NAP) endogeen, en zijn de parameters A en T exogeen. Je moet dan laten zien dat A de amplitude (in m) van de fluctuatie in de waterstand weergeeft, en T (in h) de periode van de fluctuatie. Als de tijd t ook eenheid h heeft is de vergelijking dimensioneel correct.

Regelmatig terugkerende gebeurtenis

Hoe geef je in vergelijkingen (en in Excel) weer dat een gebeurtenis met een vaste frequentie optreedt?

Als die gebeurtenis f keer per uur optreedt, dan betekent dat dat er tussen twee opeenvolgende gebeurtenissen steeds 1/f uur zit. Je kunt dat dan modelleren door behalve een binaire variabele (met 1 = "de gebeurtenis treedt op") een timer-variabele aan je model toe te voegen. Zo'n timer kun je dan zien als een voorraadgrootheid (in uren) die per tijdstap Δt uur afneemt. Op het moment dat die voorraad dan "op" zou raken is, vul je hem weer met de tussentijd 1/f. Zie Excel:Timer voor regelmatige gebeurtenis voor een voorbeeld.

Gevoeligheidsanalyse

Hoe doe je gevoeligheidsanalyse bij een dynamisch model?

Als een uitvoervariabele X tijdsafhankelijk is krijg je heel veel uitvoerwaarden Xt. Welke waarde moet je dan gebruiken om de vergelijking te maken met de uitkomsten van het basisscenario?

Bij een dynamisch model krijg je voor de uitvoervariabelen inderdaad tijdreeksen. De gevoeligheidsanalyse voer je daarom niet uit op deze reeksen, maar op de beschrijvende statistieken van die reeksen (laagste waarde MIN, hoogste waarde MAX, gemiddelde waarde μ en de standaarddeviatie σ). De voorbeeldmodellen die op BrightSpace staan laten zien hoe je in Excel die beschrijvende statistieken per uitvoervariabele berekent. Bij de gevoeligheidsanalyse kijk je dan hoeveel (%) elk van deze vier statistieken verandert wanneer je een invoervariabele 10% hoger maakt (of een ander niet te klein en ook niet te groot percentage).

Excel biedt verschillende functies voor standaarddeviatie. Welke moet je gebruiken?

Voor simulatiemodellen zoals je die bij dit vak maakt gebruik je STDEV.P.

Differentievergelijking

Wij gebruiken de differentievergelijking Nt+Δt = Nt–Δt + S·Δt, is dat correct?

Nee, want jullie gebruiken twee notatieversies door elkaar.
Een differentievergelijking:
drukt de huidige waarde van een variabele uit op basis van de waarde die deze variabele in de vorige tijdstap had:
xt = f(xt-Δt)
of (wat wis- en natuurkundig op hetzelfde neerkomt):
drukt de waarde van een variabele in de volgende tijdstap uit op basis van de huidige waarde van die variabele:
xt+Δt = f(xt)
Zowel links als rechts van het =-teken moet dus expliciet verwezen worden naar de bedoelde tijdstap.
Zie hiervoor ook de wiki-pagina over het discretetijdmodel.

Poisson-verdeling

Ik gebruik de Poisson-verdeling en heb de kansverdeling opgesteld voor de aankomstfrequentie, in de volgende vorm: P(fA=k) = (fAk/k!) · (e-k ).

Dit is inderdaad de bijbehorende verdeling, maar daarmee kun je geen Poisson-verdeelde toevalsgetallen genereren.
Zie hiervoor vooral het overzicht dat op de wiki staat om stochasten te genereren: Excel:Kansverdelingen.

Replicaties

In een probabilistisch dynamisch model hebben we in iedere tijdstap uitvoervariabelen. We nemen aan dat ook dan weer replicaties moeten worden uitgevoerd, maar dan voor alle tijdstappen. Hoe implementeren we dit in Excel?

Bij een probabilistisch model kun je gebruikmaken van beschrijvende statistieken. Zo kun je bijvoorbeeld het minimum, maximum en gemiddelde van de tijdreeksen bepalen. Maar omdat iedere run van je model weer andere getallen oplevert, moet je vervolgens van deze beschrijvende statistieken weer de beschrijvende statistieken gebruiken.
Als je bijvoorbeeld bij één run het minimum, maximum en gemiddelde van een tijdreeks berekent, moet je over alle replicaties dáár weer het gemiddelde van nemen, dus: het gemiddelde van de minima, het gemiddelde van de maxima en het gemiddelde van de gemiddelden.
Zie ook de pagina over het experimenteel ontwerp en Bestand:TB112-replicaties.pdf, waarin wordt uitgelegd hoe je snel veel replicaties kunt maken.
Vaak gedraagt een model zich aan het begin nog even wat anders dan later, omdat de variabelen zich nog wat moeten aanpassen — dan kun je de de eerste zoveel tijdstappen uit de statistieken laten. Soms is een minimum of maximum niet zo zinnig, omdat een variabelewaarde blijft toenemen. In dat geval kun je bijvoorbeeld de stijging zelf (de toename gedurende een bepaalde tijd) gebruiken voor de statistiek.

Moet je alle beschrijvende statistieken implementeren in Excel, óók als de uitvoervariabele een binaire variabele is?

Bij een probabilistisch model moet je altijd beschrijvende statistieken berekenen. Bij binaire uitvoervariabelen lijken MIN en MAX niet echt relevant, maar je kunt er wel mooi mee controleren of de uitvoervariabele überhaupt wel van waarde verandert.
De standaarddeviatie σ is veel minder interessant dan het gemiddelde μ (want dát is de benadering van de kans p waar je naar op zoek bent), maar toch geeft die σ informatie. Theoretisch (d.w.z. wiskundig afgeleid) is de standaarddeviatie van Bin(N, p) gelijk aan √(p·(1-p)/N). Bij een binaire variabele met kans p op een 1 is N=1, dus is de standaarddeviatie in theorie √(p·(1-p)). Dit betekent dat je, als je het gemiddelde (over alle replicaties) μ van de binaire uitvoervariabele als kans p ziet, kunt checken of de waarde √(μ·(1-μ)) inderdaad dicht in de buurt zit van de standaarddeviatie (over alle replicaties) σ van de binaire uitvoervariabele. Net als MIN en MAX geeft dus ook σ informatie over of de uitvoer van je replicaties "klopt".

Onze grafieken met gemiddelde μ en σ over steeds meer replicaties convergeren niet. Hoe kan dat?

Dat gebeurt typisch als je formule voor de berekening van het gemiddelde niet het juiste celbereik aangeeft.
Stel dat je in kolom R je uitvoerwaarde per replicatie hebt staan, en het gemiddelde over 1, 2, ..., N replicaties in de kolom S daarnaast berekent. Als je data in bijv. rij 5 begint, dan staat in cel S5 de formule =GEMIDDELDE(R$5:R5), in cel S6 dan =GEMIDDELDE(R$5:R6), enzovoorts (dus het celbereik wordt steeds 1 rij groter).
Twee fouten zijn snel gemaakt: Je kunt het dollarteken in R$5 zijn vergeten, of je kunt in plaats van de dubbele punt een puntkomma hebben gebruikt (dus =GEMIDDELDE(R$5;R6)). Beide notaties zijn geldig in Excel, maar geven een heel andere uitkomst dan bedoeld.

Histogrammen in verslaglegging

Moet je, als om een kansverdeling wordt gevraagd, bij elk experiment ook een histogram in je verslag opnemen?
Wij hebben een experimenteel ontwerp met 10 experimenten, en dan is 10 grafieken maken niet alleen veel werk, maar wordt het verslag ook erg lang.

Aparte histogrammen zijn niet nodig wanneer de kansverdelingen allemaal ongeveer dezelfde vorm hebben (en dat is meestal het geval). Het is dan voldoende om dat expliciet te vermelden (met verwijzing naar het histogram dat in §3 staat), en dan in de overzichtstabel voor elkk experiment de vier beschrijvende statistieken te laten zien. Uit die μ, σ, MIN en MAX kun je dan al opmaken hoe de vorm verandert: lagere MIN en/of lager gemiddelde betekent bijv. dat de "bult" naar links verschuift, lagere standaarddeviatie dat de "bult" smaller is, hogere MAX dat de "staart" langer is.

Notatie in verslag

Moeten de Excel-formules in het verslag staan?

In het implementatiehoofdstuk staan geen formules zoals die in Excel zijn ingevoerd, alleen een doorlopende tekst. Is dit een essentiële fout?

Formules in het verslag moeten in het operationalisatiehoofdstuk in wiskundige notatie staan. Dus bijvoorbeeld
M ~ Bin(1, p),
waarbij dan wordt uitgelegd wat de kans p inhoudt, en niet
=BINOMIALE.INV(1;K14;ASELECT())
In het implementatiehoofdstuk kan het bij bijzondere vergelijkingen (zoals de implementatie van sommen m.b.v. VERSCHUIVING, of van kansverdelingen zoals hierboven) zinvol zijn om de Excelformule te geven. Dat is echter niet verplicht, dus geen essentieel onderdeel van het verslag.

Kan Excel ook afronden op een aantal significante cijfers i.p.v. een aantal decimalen?

Helaas niet. Alleen het aantal decimalen kun je regelen. Doe dat ook zodat de decimale punt of komma binnen de kolommen recht uitgelijnd staat en je daardoor goed kunt zien of getallen toenemen of juist afnemen.
Kies per variabele een geschikt aantal decimalen!
Vermeld in je verslaglegging eventueel de significantie, en noem dan ook de beperking van Excel op dit gebied.
N.B. Zo'n vermelding is dan heel zorgvuldig, maar niet verplicht dus geen reden om een lagere beoordeling te geven.

Voorkomen van kringverwijzing

Hoe voorkomen we een kringverwijzing in Excel?

Wanneer je een Excel-bestand opent en er verschijnt een waarschuwing dat er kringverwijzingen zijn aangetroffen, negeer die waarschuwing dan niet – je implementatie in Excel is dan fout. Excel laat je zelfs zien waar de fout zit: met blauwe stippen en pijlen worden de cellen aangewezen waar het mis gaat. Maak gebruik van die informatie!
Een "kringverwijzing" in Excel ontstaat als je in een formule in een cel verwijst naar de cel zelf, eventueel via andere cellen. Zoals wanneer er in een ALS-functie in C13 verwezen wordt naar E13, maar E13 gebruik maakt van de waarde van C13. Dan zou eerst de waarde van C13 bekend moeten zijn voordat de waarde van C13 bepaald kan worden, wat uiteraard niet mogelijk is.
Bijvoorbeeld wanneer je de bereidheid om in een rij te gaan staan berekent uit de nieuwe rijlengte, maar de nieuwe rijlengte ook wilt berekenen op basis van diezelfde bereidheid.
Dit kun je voorkomen door de één van de twee te baseren op de vorige waarde. In dit geval is het logisch om de nieuwe rijlengte te bepalen op basis van de vorige bereidheid. Je kunt het je als volgt voorstellen: de nieuwe rijlengte is het resultaat van de oude rijlengte en de bereidheid die er op dat moment (in de vorige tijdstap dus) was. De nieuwe bereidheid (die weer zal gelden tot de volgende tijdstap) volgt uit de nieuwe rijlengte.


Estafette A

Vraagstuk A – Accu maakt autonoom?

Vraagstuk B – Besparen met een buffer?

Vraagstuk C – Compenseren van onbalans

Wat is de rol van die binaire grootheid "meting JA/NEE"?
Ik snap niet precies wat er gezegd wordt met deze zin van de aanwijzing: De invloed van de meetfrequentie kun je niet direct in een diagram weergeven. Om weer te geven dat tussen twee meetmomenten in geen bijregeling plaatsvindt kun je een exogene binaire grootheid "meting? (JA/NEE)" toevoegen die alleen waarde 1 heeft als er gemeten wordt". Zou u mij dit een beetje kunnen uitleggen?

Bijzonder aan dit vraagstuk is dat (1) je data hebt met een tijdstap van 0,1 s en je voor het beantwoorden van de onderzoeksvraag je model ook de tijdstap Δt = 0,1 s moet hebben, terwijl (2) de tijd tussen twee metingen wél een onafhankelijke grootheid is in je onderzoeksvraag.
Je model moet dus kunnen weergeven dat het systeem maar één keer in de zoveel tijdstappen de resulterende onbalans waarneemt en alleen dán het systeem bijregelt (indien nodig). Het compensatiesysteem moet dus een klok bevatten die met vaste tussenpozen van N tijdstappen aangeeft "NU (op dit tijdstip t) wordt de onbalans gemeten".
In een conceptueel model geef je zo'n het bestaan van zo'n klok dan simpelweg weer als een exogene binaire grootheid "meting? JA/NEE" waarbij je dan toelicht dat deze grootheid ééns in de N tijdstappen 1 is en de rest van de tijd 0. Door een causale relatie van deze binaire grootheid naar de regelingsgrootheid te trekken kun je dan aangeven dat die regeling alleen op de meetmomenten kan veranderen.
Hoe je dit gedrag met een modelvergelijking weergeeft staat hier op de Q&A Algemeen uitgelegd, maar dat heb je pas nodig bij de operationalisatie (Stap 2).

Vraagstuk D – Delta-21 pomp/turbine

Vraagstuk E – Elektriciteitskabel warmt op

Vraagstuk F – Flow door warmtenet regelen

Vraagstuk G – Gas besparen kun je thuis

Vraagstuk H – Heet-watervat verliest warmte