Beschrijvende statistiek: verschil tussen versies

Uit Systeemmodellering
Naar navigatie springen Naar zoeken springen
(Nieuwe pagina aangemaakt met ' Bezig met bewerken van Beschrijvende statistiek Ga naar: navigatie, zoeken VetSchuinInterne koppelingExterne koppeling (vergeet http:// niet)Tussenkopje (hoogste n...')
 
Regel 39: Regel 39:
 
[[Categorie:Definities]]
 
[[Categorie:Definities]]
 
</noinclude>
 
</noinclude>
Samenvatting:
 
Dit is een kleine bewerking  Deze pagina volgen
 
 
Let op: alle bijdragen aan Systeemmodellering worden geacht te zijn vrijgegeven onder de Creative Commons Naamsvermelding-Niet Commercieel-Gelijk delen (zie Systeemmodellering:Auteursrechten voor details). Als je niet wilt dat je tekst door anderen naar believen bewerkt en verspreid kan worden, kies dan niet voor "Pagina opslaan".
 
Hierbij beloof je ons tevens dat je deze tekst zelf hebt geschreven of overgenomen uit een vrije, openbare bron.
 
Gebruik geen materiaal dat beschermd wordt door auteursrecht, tenzij je daarvoor toestemming hebt!
 
Annuleren | Hulp bij bewerken (opent in een nieuw venster)
 
Navigatiemenu
 
 
    PieterBots
 
    Overleg
 
    Voorkeuren
 
    Volglijst
 
    Bijdragen
 
    Afmelden
 
 
    Pagina
 
    Overleg
 
 
    Lezen
 
    Bewerken
 
    Geschiedenis weergeven
 
 
Navigatie
 
 
    Hoofdpagina
 
    Gebruikersportaal
 
    In het nieuws
 
    Recente wijzigingen
 
    Willekeurige pagina
 
    Hulp
 
 
Hulpmiddelen
 
 
    Koppelingen naar deze pagina
 
    Verwante wijzigingen
 
    Bestand uploaden
 
    Speciale pagina's
 
    Paginagegevens
 
 
    Privacybeleid
 
    Over Systeemmodellering
 
    Voorbehoud
 
 
    Creative Commons Naamsvermelding-Niet Commercieel-Gelijk delen
 
    Powered by MediaWiki
 

Versie van 6 nov 2020 12:50

Bezig met bewerken van Beschrijvende statistiek Ga naar: navigatie, zoeken VetSchuinInterne koppelingExterne koppeling (vergeet http:// niet)Tussenkopje (hoogste niveau)MediabestandKoppeling naar bestandWiki-opmaak negerenJe handtekening met datum en tijdHorizontale lijn (gebruik spaarzaam) Met de beschrijvende statistieken worden getallen bedoeld die een (grote) gegevensverzameling karakteriseren. Deze getallen vormen een maat voor de grootte, het centrum, en de spreiding van de verzameling. Door alleen naar deze getallen te kijken kun je snel zien of gegevens die je hebt verzameld over twee variabelen op elkaar lijken of juist verschillen.

Grootte

De grootte van een gegevensverzameling wordt gemeten als het aantal elementen in die verzameling. Vaak spreekt men van "het aantal waarnemingen". Dit aantal wordt aangegeven met de letter N (van het Engelse number).

Centrum

Om het centrum van een gegevensverzameling te bepalen worden drie verschillende indicatoren gebruikt:

  • Voor numerieke waarden kan het gemiddelde μ worden berekend als de som van alle waarden gedeeld door hun aantal N. Als formule geschreven:
Gemiddelde.png
  • De mediaan is de waarde van het middelste element in de gegevensverzameling wanneer deze in oplopende waarde is geordend. Als de gegevensverzameling een even aantal elementen heeft, en er dus geen middelste element is, wordt voor de mediaan het gemiddelde van de elementen N/2 en N/2 + 1 genomen.
  • De modus is de waarde die het vaakst voorkomt in de gegevensverzameling.

Spreiding

De spreiding van een gegevensverzameling wordt beschreven door vier getallen:

  • Het minimum en het maximum, d.w.z. de laagste en de hoogste waarde in de verzameling.
  • De variantie σ2, berekend als de som (over alle waarden x in de verzameling) van het kwadraat van de afwijking van x t.o.v. het gemiddelde μ. Als formule geschreven:
Variantie.png
  • De standaarddeviatie (of standaardafwijking) σ, gedefinieerd als de vierkantswortel uit de variantie σ2. Daarmee heeft σ dezelfde dimensie als de grootheid waarvan de spreiding bepaald wordt, en kan deze bijvoorbeeld in een diagram langs dezelfde as gebruikt worden. Zie hiervoor bijvoorbeeld deze figuur, waarin de normale verdeling gegeven is met gemiddelde μ en standaardafwijking σ.

Kwartielen en Percentielen

Om een gegevensverzameling te karakteriseren worden soms ook kwartielen of percentielen als indicatoren gebruikt. Als je een gegevensverzameling hebt gesorteerd in oplopende volgorde van waarden is het eerste kwartiel de waarde van het ((N+1)/4)e element, het tweede kwartiel de waarde van het ((N+1)/2)e element, en het derde kwartiel de waarde van het (3·(N+1)/4)e element. Evenzo is het pe percentiel de waarde van het (p·N/100)e element.

Dus:

  • 25e percentiel = eerste kwartiel
  • 50e percentiel = tweede kwartiel = mediaan
  • 75e percentiel = derde kwartiel

Zie ook